JEE MAIN 2023 Paper with Solution

PHYSICS | 30th Jan 2023 _ Shift-2

Motion[®]

PRE-ENGINEERING JEE (Main+Advanced)

PRE-MEDICAL NEET

PRE-FOUNDATION

MYBIZKID Olympiads/Boards Learn to Lead

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.) Toll Free: 18002121799 | www.motion.ac.in | Mail: info@motion.ac.in

MOTION

Scan Code for Domo Class

Umeed Rank Ki Ho Ya Selection Ki, JEET NISCHIT HA!!

Most Promising RANKS
Produced by MOTION Faculties

Nation's Best SELECTION Percentage (%) Ratio

NEET / AIIMS

AIR-1 to 10 25 Times

AIR-11 to 50 83 Times

AIR-51 to 100 81 Times

JEE MAIN+ADVANCED

AIR-1 to 10 8 Times

AIR-11 to 50 32 Times

AIR-51 to 100 36 Times

NITIN VIIJAY (NV Sir)
Founder & CEO

Student Qualified in NEET

(2022)

4837/5356 = **90.31%** (2021)

3276/3411 = **93.12%**

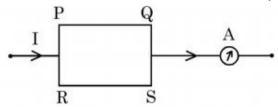
Student Qualified in JEE ADVANCED

(2022)

1756/4818 = 36.45% (2021)

1256/2994 = **41.95%**

Student Qualified in JEE MAIN


(2022)

4818/6653 = 72.41% (2021)

2994/4087 = 73.25%

SECTION - A

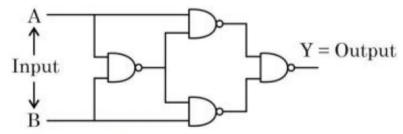
A current carrying rectangular loop PQRS is made of uniform wire. The length PR = QS = 5 cm and = RS = 100 cm. If ammeter current reading changes from I to 2I, the ratio of magnetic forces per unit length on the wire PQ due to wire RS in the two cases respectively $(f_{PO}^{I}: f_{PO}^{2I})$ is:

(1) 1:2

(2) 1:3

(3) 1:4

(4) 1:5


Sol. (3)

 $F \propto I_{_1}I_{_2}$

$$\frac{F_1}{F_{21}} = \frac{1}{4}$$

Ans. (3)

2. The output Y for the inputs A and B of circuit is given by

Truth table of the shown circuit is:

(1)	A	В	Y
	0	0	0
	0	1	1
	1	0	1
	1	1	1

	A	В	Y
(3)	0	0	0
(0)	0	1	1
	1	0	1
	1	1	0

	A	В	Y
(4)	0	0	1
	0	1	0
	1	0	0
	1	1	1

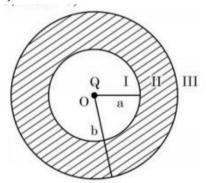
Sol. (3)

JEE MAIN 2023

3. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: Efficiency of a reversible heat engine will be highest at -273° C temperature of cold reservoir.

Reason R: The efficiency of Carnot's engine depends not only on temperature of cold reservoir but it depends on the temperature of hot reservoir too and is given as $\eta = \left(1 - \frac{T_2}{T_c}\right)$.

In the light of the above statements, choose the correct answer from the options given below


- (1) Both A and R are true but R is NOT the correct explanation of A
- (2) Both A and R are true and R is the correct explanation of A
- (3) A is false but **R** is true
- (4) A is true but **R** is false

Sol. (2)

$$\eta = 1 - \frac{T_{_L}}{T_{_H}} \ = \ \frac{T_{_H} - T_{_L}}{T_{_H}} \label{eq:eta_loss}$$

Efficiently of Carnot's engine will be highest at $-273^{\circ} = 0K$ Ans. (2)

As shown in the figure, a point charge Q is placed at the centre of conducting spherical shell of inner radius a and outer radius b. The electric field due to charge Q in three different regions I, II and III is given by: (I: r < a, II: a < r < b, III: r > b)

(1)
$$E_I = 0$$
, $E_{II} = 0$, $E_{III} = 0$

(2)
$$E_I = 0, E_{II} = 0, E_{III} \neq 0$$

(3)
$$E_I \neq 0, E_{II} = 0, E_{III} \neq 0$$

(4)
$$E_I \neq 0$$
, $E_{II} = 0$, $E_{III} = 0$

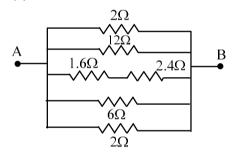
Sol. Sol. (3)

Electric field inside material of conductor is zero

Ans. (3)

Motion®

The equivalent resistance between *A* and *B* is 5.


$$(1)\frac{1}{3}\Omega$$

$$(2)\frac{1}{2}\Omega$$

$$(3)\frac{3}{2}\Omega$$

$$(4)^{\frac{2}{3}}\Omega$$

Sol.

$$\frac{1}{R_{eq}} = \frac{1}{2} + \frac{1}{12} + \frac{1}{4} + \frac{1}{6} + \frac{1}{2}$$

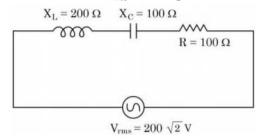
$$=\frac{18}{12}=\frac{3}{2}$$

$$R_{eq} = \frac{2}{3} \Omega$$

Ans. (4)

- A vehicle travels 4 km with speed of 3 km/h and another 4 km with speed of 5 km/h, then its average 6. speed is
 - (1) 3.50 km/h
- (2) 4.25 km/h
- (3) 4.00 km/h
- (4) 3.75 km/h

Sol.


$$\frac{2}{V_{av}} = \frac{1}{3} + \frac{1}{5} = \frac{8}{15}$$

$$V_{av} = \frac{15}{4} = 3.75 \text{ km hr}^{-1}$$

Ans. (4)

JEE MAIN 2023

7. In the given circuit, rms value of current (I_{rms}) through the resistor R is:

- (1) $2\sqrt{2}$ A
- (2)2A
- (3)20A
- $(4)^{\frac{1}{2}}$ A

Sol. (2

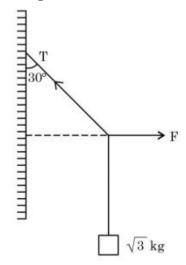
$$Z = \sqrt{R^2 + \left(X_L - X_e\right)^2}$$

$$Z = \sqrt{\left(100\right)^2 + \left(200 - 100\right)^2}$$

$$Z = 100\sqrt{2} \Omega$$

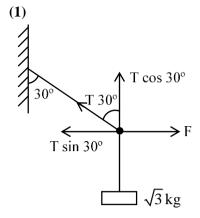
$$I_{rms} = \frac{V_{rms}}{Z} = \frac{200\sqrt{2}}{100\sqrt{2}} = 2 \text{ A}$$

- **8.** A point source of 100 W emits light with 5% efficiency. At a distance of 5 m from the source, the intensity produced by the electric field component is:
 - $(1)\frac{1}{2\pi}\frac{W}{m^2}$
- $(2)\frac{1}{20\pi}\frac{W}{m^2}$
- $(3)\frac{1}{10\pi}\frac{W}{m^2}$
- $(4)\frac{1}{40\pi}\frac{W}{m^2}$


Sol. (4

$$I_{EF} = \frac{1}{2} \times \frac{5}{4\pi \left(5\right)^2}$$

$$=\frac{1}{40\pi}\,\mathrm{w/m^2}$$


Ans: (4)

9. A block of $\sqrt{3}$ kg is attached to a string whose other end is attached to the wall. An unknown force F is applied so that the string makes an angle of 30° with the wall. The tension T is: (Given $g = 10 \text{ ms}^{-2}$)

- (1) 20 N
- (2) 10 N
- (3) 15 N
- (4) 25 N

$$F = Tsin 30^{\circ}$$

$$\sqrt{3}g = T \cos 30^{\circ}$$

$$\tan 30^\circ = \frac{F}{\sqrt{3}}g$$

$$\frac{1}{\sqrt{3}} = \frac{F}{\sqrt{3}g}$$

$$F = 10 \text{ N}$$

$$T = \frac{F}{\sin 30^{\circ}} = 10 \times 2$$

$$T = 10 \times 2 = 20 \text{ N}$$

Ans: (1)

10. Match List I with List II:

List I	List II
A. Attenuation	 Combination of a receiver and transmitter.
B. Transducer	II. process of retrieval of information from the carrier wave at receiver
C. Demodulation	III. converts one form of energy into another
D. Repeater	IV. Loss of strength of a signal while propogating through a medium.

Choose the correct answer from the options given below:

(1) A-IV, B-III, C-I, D-II

(2) A-I, B-II, C-III, D-IV

(3) A-IV, B-III, C-II, D-I

(4) A-II, B-III, C-IV, D-I

Sol. (3)

Theory

- An electron accelerated through a potential difference V_1 has a de-Broglie wavelength of λ . When the potential is changed to V_2 , its de-Broglie wavelength increases by 50%. The value of $\left(\frac{V_1}{V_2}\right)$ is equal to
 - (1) 3
- $(2)\frac{3}{2}$
- (3)4
- $(4)^{\frac{9}{4}}$

Sol.

$$KE = \frac{P^2}{2m}$$

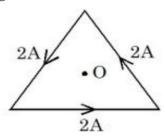
$$P = \frac{h}{\lambda}$$

$$eV_1 \,=\, \frac{\left(\frac{h}{\lambda}\right)^2}{2m}$$

$$eV_2 \,=\, \frac{\left(\frac{h}{1.5\lambda}\right)^2}{2m}$$

$$\frac{V_1}{V_2} = (1.5)^2 = \frac{9}{4}$$

Ans: (4)


A flask contains hydrogen and oxygen in the ratio of 2:1 by mass at temperature 27°C. The ratio of 12. average kinetic energy per molecule of hydrogen and oxygen respectively is:

Sol. **(2)**

Average kinetic energy per molecule = $\frac{5}{2}$ KT

Ratio =
$$\frac{1}{1}$$

As shown in the figure, a current of 2 A flowing in an equilateral triangle of side $4\sqrt{3}$ cm. The magnetic 13. field at the centroid O of the triangle is

(Neglect the effect of earth's magnetic field)

(1)
$$1.4\sqrt{3} \times 10^{-5} \text{ T}$$

(2)
$$4\sqrt{3} \times 10^{-4} \text{ T}$$

(3)
$$3\sqrt{3} \times 10^{-5} \text{ T}$$
 (4) $\sqrt{3} \times 10^{-4} \text{ T}$

$$(4)\sqrt{3}\times10^{-4}$$
 T

Sol.

d tan
$$60^\circ = 2 \sqrt{3}$$

$$d = 2 \text{ cm}$$

$$B=3\bigg(\frac{\mu_0 I}{2\pi d}\bigg)sin~60^\circ$$

$$B = \frac{3 \times 2 \times 10^{-7} \times 2}{2 \times 10^{-2}} \times \frac{\sqrt{3}}{2}$$

$$B = 3\sqrt{3} \times 10^{-5} T$$

JEE MAIN 2023

An object is allowed to fall from a height *R* above the earth, where *R* is the radius of earth. Its velocity when it strikes the earth's surface, ignoring air resistance, will be

(1)
$$\sqrt{2gR}$$

(2)
$$\sqrt{\frac{gR}{2}}$$

(3)
$$2\sqrt{gR}$$

(4)
$$\sqrt{gR}$$

Sol. (4

Use work energy theorem

$$\Delta KE = w_g$$

$$\frac{1}{2} m v^2 - 0 = - [u_f - u_i]$$

$$\frac{1}{2} \, \text{mv}^2 = - \left[-\frac{\text{GMm}}{\text{R}} - \left(-\frac{\text{GMm}}{2\text{R}} \right) \right]$$

$$\frac{1}{2}mv^2 = \frac{GMm}{R} - \frac{GMm}{2R}$$

$$=\frac{GMm}{R}\left(\frac{2-1}{2}\right)$$

$$\frac{1}{2}mv^2 = \frac{GMm}{2R}$$

$$V = \sqrt{\frac{GM}{R}}$$

$$V = \sqrt{gR} (GM = gR^2)$$

15. Match List I with List II:

	List I	List II
A.	Torque	I. $kg m^{-1} s^{-2}$
В.	Energy density	II. kg ms ⁻¹
C.	Pressure gradient	III. $kg m^{-2} s^{-2}$
D.	Impulse	IV. $kg m^2 s^{-2}$

Choose the correct answer from the options given below:

(1)
$$A - IV$$
, $B - I$, $C - III$, $D - II$

(2)
$$A - IV, B - III, C - I, D - II$$

(3)
$$A - IV, B - I, C - II, D - III$$

(4)
$$A - I, B - IV, C - III, D - II$$

Sol. (1)

Torque =
$$N - m$$

$$= kg \frac{m}{sec^2} m$$

$$=\frac{\mathrm{kg} \ \mathrm{m}^2}{\mathrm{sag}^2}$$

Energy Density =
$$\frac{N-m}{m^3} = \frac{N}{m^2}$$

$$= kg \frac{m}{sec^2} \times \frac{1}{m^2}$$

Pressure gradient =
$$\frac{Pressure}{length} = \frac{F}{A - length}$$

$$= kg m^{-2} sec^{-2}$$

Impulse =
$$\Delta P = kg m - s^{-1}$$

JEE MAIN 2023

Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: The nuclear density of nuclides $^{10}_{5}$ B, $^{6}_{3}$ Li, $^{56}_{26}$ Fe, $^{20}_{10}$ Ne and $^{209}_{83}$ Bi can be arranged as $\rho^{N}_{Bi} > \rho^{N}_{Fe} > \rho^{N}_{Ne} > \rho^{N}_{Bi} > \rho^{N}_{Li}$

Reason R: The radius R of nucleus is related to its mass number A as $R = R_0 A^{1/3}$, where R_0 is a constant.

In the light of the above statements, choose the correct answer from the options given below

- (1) A is false but R is true
- (2) A is true but R is false
- (3) Both A and R are true but R is NOT the correct explanation of A
- (4) Both A and R are true and R is the correct explanation of A
- **Sol.** (1

Nuclear density is independent of A

Ans: (1)

A force is applied to a steel wire 'A', rigidly clamped at one end. As a result elongation in the wire is 0.2 mm. If same force is applied to another steel wire 'B' of double the length and a diameter 2.4 times that of the wire 'A', the elongation in the wire 'B' will be (wires having uniform circular cross sections)

(1)
$$6.06 \times 10^{-2}$$
 mm

(2)
$$2.77 \times 10^{-2}$$
 mm

$$(3) 3.0 \times 10^{-2} \text{ mm}$$

$$(4) 6.9 \times 10^{-2} \text{ mm}$$

$$Y = \frac{F\ell}{A\Lambda\ell}$$

$$F = \frac{Y A \Delta \ell}{\ell}$$

$$\left(\frac{\mathbf{A}\Delta\ell}{\ell}\right)_{1} = \left(\frac{\mathbf{A}\Delta\ell}{\ell}\right)_{2}$$

$$\frac{\Delta \ell_2}{\Delta \ell_1} = \frac{A_1}{A_2} \times \frac{\ell_2}{\ell_1}$$

$$\frac{\left(\Delta\ell\right)_2}{0.2} = \frac{1}{2.4 \times 2.4} \times \frac{2}{1}$$

$$\left(\Delta\ell\right)_2 = 6.9 \times 10^{-2} \text{ mm}$$

Ans: (4)

- 18. A thin prism, P_1 with an angle 6^{th} and made of glass of refractive index 1.54 is combined with another prism P_2 made from glass of refractive index 1.72 to produce dispersion without average deviation. The angle of prism P_2 is
 - (1) 1.3°
- $(2)6^{\circ}$
- $(3) 4.5^{\circ}$
- $(4) 7.8^{\circ}$

Sol. (3)

 $\delta_1 = \delta_2$ [For no deviation]

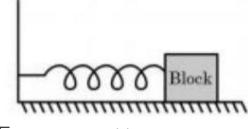
$$6(1.54 - 1) = A(1.72 - 1)$$

$$A = \frac{18}{4} = 4.5^{\circ}$$

Ans: (3)

JEE MAIN 2023

- A machine gun of mass 10 kg fires 20 g bullets at the rate of 180 bullets per minute with a speed of 19. 100 m s^{-1} each. The recoil velocity of the gun is
 - (1) 1.5 m/s
- (2) 0.6 m/s
- (3) 2.5 m/s
- (4) 0.02 m/s


Sol. **(2)**

$$20 \times 10^{-3} \times \frac{180}{60} \times 100 = 10 \text{ V}$$

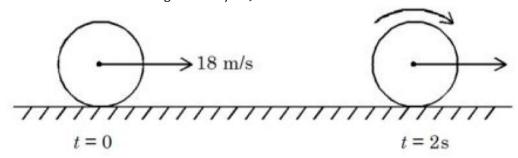
 $V = 0.6 \text{ ms}^{-1}$

Ans: (2)

For a simple harmonic motion in a mass spring system shown, the surface is frictionless. When the 20. mass of the block is 1 kg, the angular frequency is ω_1 . When the mass block is 2 kg the angular frequency is ω_2 . The ratio ω_2/ω_1 is

- (1) $1/\sqrt{2}$ **(1)**
- (2) $\sqrt{2}$
- (3)2
- (4) 1/2

Sol.


$$\omega = \sqrt{\frac{k}{m}}$$

$$\frac{\omega_2}{\omega_1} = \sqrt{\frac{m_1}{m_2}} = \sqrt{\frac{1}{2}}$$

Ans: (1)

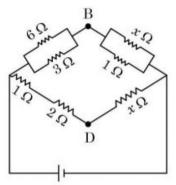
SECTION - B

A uniform disc of mass 0.5 kg and radius r is projected with velocity 18 m/s at t = 0 s on a rough 21. horizontal surface. It starts off with a purely sliding motion at t = 0 s. After 2 s it acquires a purely rolling motion (see figure). The total kinetic energy of the disc after 2 s will be ______ J (given, coefficient of friction is 0.3 and $g = 10 \text{ m/s}^2$).

$$a = -\mu_k g = -3$$

$$v = u + at$$

$$v = 18 - 3 \times 2 = 12 \text{ ms}^{-1}$$


$$KE = \frac{1}{2} mv^2 + \frac{1}{2} \left(\frac{mr^2}{2} \right) \left(\frac{v}{r} \right)^2$$

$$KE = \frac{3}{4}mv^2$$

$$KE = 3 \times 18 = 54 J$$

Ans: (54)

22. If the potential difference between B and D is zero, the value of x is $\frac{1}{n}\Omega$. The value of n is _____.

$$\frac{2}{3} = \frac{\frac{x}{x+1}}{x}$$

$$\frac{2}{3} = \frac{1}{x+1}$$

$$x = 0.5 = \frac{1}{2}$$

$$n = 2$$

Ans: (2)

A stone tied to 180 cm long string at its end is making 28 revolutions in horizontal circle in every minute. The magnitude of acceleration of stone is $\frac{1936}{x}$ ms⁻². The value of x _____.

(Take
$$\pi = \frac{22}{7}$$
)

$$a = \omega^2 r$$

$$a = \left(\frac{28 \times 2\pi}{60}\right)^2 \times 1.8$$

$$a = \frac{1936 \times 1.8}{225} = \frac{1936}{125} \, \text{ms}^{-2}$$

$$x = 125$$

JEE MAIN 2023

- **24.** A radioactive nucleus decays by two different process. The half life of the first process is 5 minutes and that of the second process is 30 s. The effective half-life of the nucleus is calculated to be $\frac{\alpha}{11}$ s. The value of α is ______.
- **Sol.** (300)

$$\frac{dN}{dt} \, = \! - (\lambda_1 + \lambda_2) N$$

$$\lambda_{eq} = \lambda_1 + \lambda_2$$

$$\frac{1}{t_{1/2}} = \frac{1}{300} + \frac{1}{30} = \frac{11}{300}$$

$$t_{\frac{1}{2}} = \left(\frac{300}{11}\right) \sec$$

- **25.** A faulty thermometer reads 5°C in melting ice and 95°C in stream. The correct temperature on absolute scale will be _____ K when the faulty thermometer reads 41°C.
- **Sol.** (313)

Ans:
$$\frac{41^{\circ}-5^{\circ}}{95^{\circ}-5^{\circ}} = \frac{R-0}{100-0}$$

$$R = 40^{\circ}C$$

$$R = 313 K$$

Take
$$\pi = \frac{22}{7}$$

Sol. (1584)

$$E_{\text{max}} = NAB\omega$$

$$= 100{\times}14{\times}10^{-2}{\times}3{\times}\frac{360{\times}2\pi}{60}$$

$$= 1584 \text{ V}$$

JEE MAIN 2023

- A body of mass 2 kg is initially at rest. It starts moving unidirectionally under the influence of a source of constant power P. Its displacement in 4 s is $\frac{1}{3}\alpha^2\sqrt{P}m$. The value of α will be ______.
- **Sol.** (4)

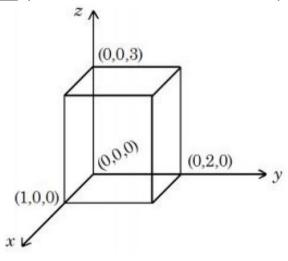
$$\frac{1}{2} \, mv^2 = pt$$

$$V = \sqrt{\frac{2pt}{m}}$$

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \sqrt{\frac{2\mathrm{pt}}{\mathrm{m}}}$$

$$\int dx = \sqrt{\frac{2p}{m}} \int \sqrt{t} dt$$

$$x = \sqrt{\frac{2p}{m}} \left[t^{\frac{3}{2}} \right]_0^4$$


$$x = \frac{1}{3} \times 16\sqrt{p}$$

$$\infty = 4$$

Ans: (4)

28. As shown in figure, a cuboid lies in a region with electric field = $2x^2\hat{\imath} - 4y\hat{\jmath} + 6\hat{k}$ N/C. The magnitude of charge within the cuboid is $n \in_0 C$.

The value of *n* is _____ (if dimension of cuboid is $1 \times 2 \times 3 \text{ m}^3$).

Sol. (12)

$$\phi_{\rm net} \ = - \ 8 \times 3 + 2 \times 6$$

$$= -12$$

$$\phi_{net} = \frac{q_{inside}}{\epsilon_0}$$

$$q_{inside} = -12 \, \epsilon_{\scriptscriptstyle 0}$$

Ans: (12)

Motion®

JEE MAIN 2023

- In a Young's double slit experiment, the intensities at two points, for the path differences $\frac{\lambda}{4}$ and $\frac{\lambda}{3}$ (λ being the wavelength of light used) are I_1 and I_2 respectively. If I_0 denotes the intensity produced by each one of the individual slits, then $\frac{I_1+I_2}{I_0} =$ ______.
- **Sol.** (3)

$$I = 4I_0 \cos^2 \frac{\phi}{2}$$

$$\Delta \phi = \frac{2\pi}{\lambda} \times \Delta x$$

$$I_1 = 4I_0 \cos^2 \frac{\pi}{4} = 2I_0$$

$$I_2 = 4I_0 \cos^2 \frac{2\pi}{3} = I_0$$

$$\Rightarrow \frac{I_1 + I_2}{I_0} = 3$$

Ans: (3)

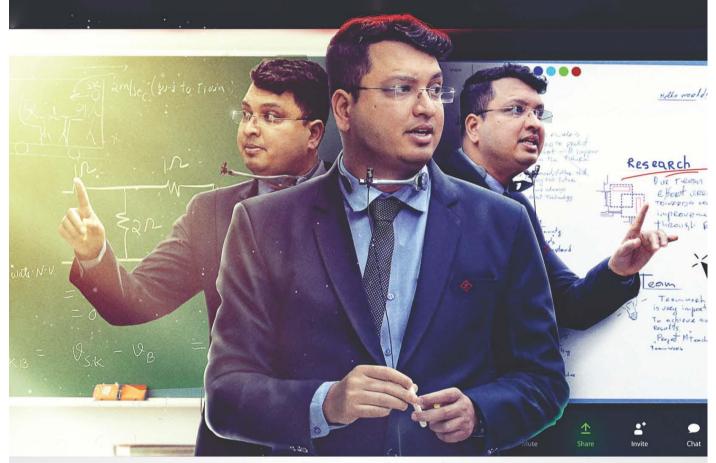
30. The velocity of a particle executing SHM varies with displacement (x) as $4v^2 = 50 - x^2$. The time period of oscillations is $\frac{x}{7}s$. The value of x is ______.

Take
$$\pi = \frac{22}{7}$$

Sol. (88)

$$4v^2 = 50 - x^2$$

$$V = \frac{1}{2}\sqrt{50 - x^2}$$


$$\omega = \frac{1}{2}$$

$$T = \frac{2\pi}{\omega} = 4\pi = \frac{88}{7}$$

$$x = 88$$

Ans: (88)

Perfect mix of CLASSROOM Program aided with technology for sure SUCCESS.

Continuing the legacy for the last 16 years

MOTION LEARNING APP

Get 7 days FREE trial & experience Kota Learning

मोशन है, तो भरोसा है।

#RankBhiSelectionBhi

ADMISSION ANNOUNCEMENT

Session 2023-24 (English & हिन्दी Medium)

Target: JEE/NEET 2025 Hurture & प्रयास Batch

Class 10th to 11th Moving

Target: JEE/NEET 2024

Dropper & STATES Batch
Class 12th to 13th Moving

Target: JEE/NEET 2024
Enthuse & WATH Batch
Class 11th to 12th Moving

Target: PRE FOUNDATION
SIP, Evening & Tapasya Batch
Class 6th to 10th Students

